Citus Blog

Articles tagged: Citus

Craig Kerstiens

PGConf EU: HyperLogLog, Eclipse, and Distributed Postgres

Written byBy Craig Kerstiens | December 11, 2017Dec 11, 2017

We're big fans of Postgres and enjoy getting around to the various community conferences to give talks on relevant topics as well as learn from others. A few months ago we had a good number of Citus team members over at the largest Postgres conference in Europe. Additionally, three of our Citus team members gave talks at the conference. We thought for those of you that couldn't make the conference you might still enjoy getting a glimpse of some of the content. You can browse the full set of talks that were given and slides for them on the PGConf EU website or flip through the presentations from members of the Citus team below.

Keep reading
Lukas Fittl

Citus warp: Database migrations without the pain

Written byBy Lukas Fittl | December 8, 2017Dec 8, 2017

We rolled out a new database migration feature for the Citus fully-managed database as a service—the Warp migration feature—as part of our Citus Cloud 2 announcement. Today I wanted to walk through Citus Cloud’s warp migration feature in more detail. Before we drill in, we should probably take a step back and look at what typically (and sometimes painfully) goes on for a large database migration.

Keep reading

So about two weeks ago we had a stealth release of Citus 7.1. And while we have already blogged a bit about the recent (and exciting) update to our fully-managed database as a service–Citus Cloud—and about our newly-added support for distributed transactions, it’s time to share all the things about our latest Citus 7.1 release.

If you’re into bulleted lists, here’s the quick overview of what’s in Citus 7.1:

  • Distributed transaction support
  • Zero-downtime shard rebalancer
  • Window function enhancements
  • Distinct ON/count(distinct) enhancements
  • Additional SQL enhancements
  • Checking for new software updates

Keep reading
Ozgun Erdogan

How Citus Executes Distributed Transactions on Postgres

Written byBy Ozgun Erdogan | November 22, 2017Nov 22, 2017

Distributed transactions are one of the meanest, baddest problems in relational databases. With the release of Citus 7.1, distributed transactions are now available to all our users. In this article, we are going to describe how we built distributed transaction support into Citus by using PostgreSQL modules. But first, let’s give an overview of what a distributed transaction is.

(If this sounds familiar, that’s because we first announced distributed transactions as part of last week’s Citus Cloud 2 announcement. The Citus Cloud announcement centered on other new useful capabilities —such as our warp feature to streamline migrations from single-node Postgres deployments to Citus Cloud — but it seems worthwhile to dedicate an entire post to distributed transactions.)

Keep reading
Jason Petersen

What it means to be a Postgres extension

Written byBy Jason Petersen | October 25, 2017Oct 25, 2017

Nearly 18 months ago, we open sourced our Citus distributed database and "unforked it" from PostgreSQL by refactoring Citus into a PostgreSQL extension. Seasoned PostgreSQL users likely already know of and use popular PostgreSQL extensions, such as hstore, PostGIS, and pg_stat_statements; however, we realized some of you might appreciate a recap of our journey from fork to extension and beyond.

Keep reading
Marco Slot

Podyn: DynamoDB to PostgreSQL replication and migration tool

Written byBy Marco Slot | September 22, 2017Sep 22, 2017

Wouldn’t it be great if you could run SQL queries on your data in DynamoDB? While this isn’t possible directly, there is an alternative: With Podyn, you can automatically replicate the schema, data, and changes in your DynamoDB tables to Postgres. Once your data is flowing into Postgres, you can start using a wide array of features including views, indexes, rollup tables, and advanced SQL queries. And if you chose Dynamo because you needed scale beyond what you thought a single Postgres instance could provide, you can replicate it into Citus.

Keep reading
Craig Kerstiens

Migrating from single-node Postgres to Citus

Written byBy Craig Kerstiens | September 20, 2017Sep 20, 2017

There are a lot of things that are everyday occurrences for engineering teams. Deploying new code, deploying a new service, it's even fairly common to deploy a net new data store or language. But migrating from one database to another is far more rare. While migrating your database can seem like a daunting task, there are lessons you can learn from others—and steps you can take to minimize risk in migrating from one database to another.

At Citus Data, we've helped many a customer migrate from single node Postgres, like RDS or Heroku Postgres, to a distributed Citus database cluster, so they can scale out and take advantage of the compute, memory, and disk resources of a distributed, scale-out solution. So we've been privy to some valuable lessons learned, and we’ve developed some best practices. Here you can find your guide for steps to follow as you start to create your migration plan to Citus.

Keep reading
Craig Kerstiens

How Citus works (a look at dynamic executors)

Written byBy Craig Kerstiens | September 15, 2017Sep 15, 2017

In the beginning there was Postgres

We love Postgres at Citus. And rather than create a newfangled database from scratch, we implemented Citus as an extension to Postgres. We've talked a lot on our blog here about you can leverage Citus, about key use cases, and different data models and sharding approaches. But we haven’t spent a lot of time explaining how Citus works. So if you want to dive deeper into how Citus works, here we're going to walk through how Citus shards the data all the way through to how the executors run queries.

Distributing data within Citus

Citus gets its benefits from sharding your data which allows us to split the data across multiple physical nodes. When your tables are significantly smaller due to sharding your indexes are smaller, vacuum runs faster, everything works like it did when your database was smaller and easier to manage.

Keep reading

"Thirty years ago, my older brother was trying to get a report on birds written that he'd had three months to write. It was due the next day.

We were out at our family cabin in Bolinas, and he was at the kitchen table close to tears, surrounded by binder paper and pencils and unopened books on birds, immobilized by the hugeness of the task ahead. Then my father sat down beside him, put his arm around my brother's shoulder, and said, 'Bird by bird, buddy. Just take it bird by bird.'"

Bird by Bird: Some Instructions on Writing and Life, by Anne LaMott

When we started working on Citus, our vision was to combine the power of relational databases with the elastic scale of NoSQL. To do this, we took a different approach. Instead of building a new database from scratch, we leveraged PostgreSQL’s new extension APIs. This way, Citus would make Postgres a distributed database and integrate with the rich ecosystem of tools you already use.

When PostgreSQL is involved, executing on this vision isn’t a simple task. The PostgreSQL manual offers 3,558 pages of features built over two decades. The tools built around Postgres use and combine these features in unimaginable ways.

After our Citus open source announcement, we talked to many of you about scaling out your relational database. In every conversation, we’d hear about different Postgres features that needed to scale out of the box. We’d take notes from our meeting and add these features into an internal document. The list would keep getting longer, and longer, and longer.

Like the child writing a report on birds, the task ahead felt insurmountable. So how do you take a solid relational database and make sure that all those complex features scale? You take it bird by bird. We broke down the problem of scaling into five hundred smaller ones and started implementing these features one by one.

Keep reading
Marco Slot

Databases and Distributed Deadlocks: A FAQ

Written byBy Marco Slot | August 31, 2017Aug 31, 2017

Since Citus is a distributed database, we often hear questions about distributed transactions. Specifically, people ask us about transactions that modify data living on different machines.

So we started to work on distributed transactions. We then identified distributed deadlock detection as the building block to enable distributed transactions in Citus.

First some background: At Citus we focus on scaling out Postgres. We want to make Postgres performance & Postgres scale something you never have to worry about. We even have a cloud offering, a fully-managed database as a service, to make Citus even more worry-free. We carry the pager so you don’t have to and all that. And because we've built Citus using the PostgreSQL extension APIs, Citus stays in sync with all the latest Postgres innovations as they are released (aka we are not a fork.) Yes, we're excited for Postgres 10 like all the rest of you :)

Back to distributed deadlocks: As we began working on distributed deadlock detection, we realized that we needed to clarify certain concepts. So we created a simple FAQ for the Citus development team. And we found ourselves referring back to the FAQ over and over again. So we decided to share it here on our blog, in the hopes you find it useful.

Keep reading

Page 10 of 13